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PART ONE

The Realm of the Atom

As physicists probe nature on scales a billion times smaller than
the unaided eye can see, they find much that is strange, 1o be
sure, but also ample evidence of connections linking the tiny
precincts of the subatomic world to the wider universe. The elec-
trons orbiting each atomic nucleus obey weird rules — per-
forming quantum leaps, for instance, which means disappearing
from one spot and appearing at another without having traversed
the space in between — but it is thanks to this odd behavior that
atoms can link up in fantastic combinations, generating the chem-
istry of everything from rocks to living cells. Radioactive atoms
decay in ways that are impossible to predict in detail, yet large
collections of such atoms decay at rates statistically so reliable
that they provide scientists with natural clocks that can be con-
sulted for information about the ages of the earth, sun, and stars.

Science often stands accused of shattering nature’s whole-
ness into bite-sized bits for analysis, but the results of such
analysis have a way of resurrecting the whole. The laws of
thermodynamics, originally investigated in order to design more
efficient steam engines, are currently being applied to the study
of black holes. Einstein’s special theory of relativity, which he
composed in an effort to understand better the infinitesimal par-
ticles of which light is composed, turned out to be relevant to
such wildly divergent concerns as the longevity of interstellar
astronauts (the faster you go, the more slowly you age) to how
the stars shine (by releasing a little of the energy locked up inside
atoms). Even Heisenberg's uncertainty principle, which revealed
that there is a fundamental limit to our ability to predict quantum
events, has implications that work more to involve us in nature
than to alienate us from it: If, as the uncertainty principle
implies, no atom can be observed without disturbing it, then the
illusion of the passive observer has been shattered, and we are
left with no choice but to recognize ourselves as active partici-
pants in the atomic world, as cosmic meddlers who of necessity
leave our fingerprints everywhere.
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the elusiveness of truth, of the ever-present necessity for skepticism.
And, finally, there is the non-mathematical world, in which the math-
ematician appears unable to find success, and which at almost all
points accords the mathematician a monolithic indifference. So there
is no way out for mathematicians; there is no place for them to turn
but to other mathematicians and inward on themselves. The insanity
and suicide levels among mathematicians are probably the highest in
any of the professions. But the rewards are proportionately great. A
new mathematical result, entirely new, never before conjectured or
understood by anyone, nursed from the first tentative hypothesis
through labyryinths of false attempted proofs, wrong approaches,
unpromising directions, and months or years of difficult and delicate
work — there is nothing, or almost nothing, in the world that can
bring a joy and a sense of power and tranquility to equal those of
its creator. And a great new mathematical edifice is a triumph that
whispers of immortality. What is more, mathematics generates a
momentum, so that any significant result points automatically to
another new result, or perhaps to two or three other new results.
And so it goes — goes, until the momentum all at once dissipates.
Then the mathematical career is, essentially, over; the frustrations
remain, but the satisfactions have vanished. It has been said that no
man should become a philosopher before the age of forty. Perhaps
no man should remain a mathematician after the age of forty. The
world is, after all, full of worlds to conquer.
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We think of geometry as ancient — as the science of Euclid and
of the Egyptian surveyors — but it is also a fertile, living disci-
pline. The potential of its undiscovered riches was demonstrated
anew in the 1970s with the discovery, by Benoit B. Mandelbrot
(b. 1924), of fractals, a new field in geometry capable of gen-
erating and interpreting structures the complexity and beauty of
which rival that of nature’s own. Disinclined to underestimate
his own abilities (he had taught economics at Harvard, engi-
neering at Yale, and physiology at the Einstein School of Med-
icine), Mandelbrot proclaimed the news of fractals in a heroic
tone that prompted one reviewer of his book The Fractal Geom-
etry of Nature to remark approvingly, “I like people who write
for glory and not just for money.”

How Long Is the Coast of
Britain?

Fractal Geometry

Why is geometry often described as “cold” and “dry”? One
reason lies in its inability to describe the shape of a cloud, a mountain,
a coastline, or a tree. Clouds are not spheres, mountains are not
cones, coastlines are not circles, and bark is not smooth, nor does
lightning travel in a straight line.

More generally, I claim that many patterns of Nature are so
irregular and fragmented, that, compared with Euclid — a term used
in this work to denote all of standard geometry — Nature exhibits
not simply a higher degree but an altogether different level of com-
plexity. The number of distinct scales of length of natural patterns
is for all practical purposes infinite.
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The existence of these patterns challenges us to study those
forms that Euclid leaves aside as being “formless,” to investigate the
morphology of the “amorphous.” Mathematicians have disdained
this cha!lcnge, however, and have increasingly chosen to flee from
nature by devising theories unrelated to anything we can see or feel.

Responding to this challenge, I conceived and developed a new
geometry of nature and implemented its use in a number of diverse
fields. It describes many of the irregular and fragmented patterns
around us, and leads to full-Hedged theories, by identifying a family
of shapes I call fractals. The most useful fractals involve chance, and
both their regularities and their irregularities are statistical. Also, the
shapes described here tend to be scaling, implying that the degree of
their irregularity and/or fragmentation is identical at all scales. The
concept of fractal (Hausdorff) dimension plays a central role in this
work.

Some fractal sets are curves or surfaces, others are disconnected
“dusts,” and yet others are so oddly shaped that there are no good
terms for them in either the sciences or the arts.

* % Fk ok %

E. J. Dyson has given an eloquent summary of this theme of mine:

“Fractal is a word invented by Mandelbrot to bring together
under one heading a large class of objects that have [played] . .. an
historical role . . . in the development of pure mathematics. A great
revolution of ideas separates the classical mathematics of the 19th
century from the modern mathematics of the 20th. Classical math-
ematics had its roots in the regular geometric structures of Euclid
and the continuously evolving dynamics of Newton. Modern math-
ematics began with Cantor’s set theory and Peano's space-filling
curve. Historically, the revolution was forced by the discovery of
mathematical structures that did not fit the patterns of Euclid and
Newton. These new structures were regarded . . . as ‘pathological,’
-+ - as a ‘gallery of monsters,” kin to the cubist painting and atonal
music that were upsetting established standards of taste in the arts
at about the same time. The mathematicians who created the mon-
sters regarded them as important in showing that the world of pure
mathematics contains a richness of possibilities going far beyond the
simple structures that they saw in Nature, Twentieth-century math-
ematics flowered in the belief that it had transcended completely the
limitations imposed by its natural origins.
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“Now, as Mandelbrot points out, ... Nature has played a joke
on the mathematicians. The 19th-century mathematicians may have
been lacking in imagination, but Nature was not. The same patho-
logical structures that the mathematicians invented to b_reak l(?c_bse
from 19th-century naturalism turn out to be inherent in familiar
objects all around us.” . _

In brief, I have confirmed Blaise Pascal’s observation that imag-
ination tires before Nature. . . . ‘

Fractal geometry reveals that some of the most austerely fOI‘IIlé.ll
chapters of mathematics had a hidden face: a world of pure plastic
beauty unsuspected till now. . . .

How Long Is the Coast of Britain?

To introduce a first category of fractals, namely curves whose
fractal dimension is greater than 1, consider a stretch of coastline. It
is evident that its length is at least equal to the distance measured
along a straight line between its beginning and its cnc.i. Howevm‘", r.h.e
typical coastline is irregular and winding, and Ehere Is no question it
is much longer than the straight line between its end points.

There are various ways of evaluating its length more accuratlely,
and this chapter analyzes several of them. The result is most peculiar:
coastline length turns out to be an elusive notion that slips between
the fingers of one who wants to grasp it. All lmcasurerr‘len‘t methoc%s
ultimately lead to the conclusion that the typical coas‘dme s lt":ngti? s
very large and so ill determined that it is best t_:nnm(}t:rcd 1nﬁr.me.
Hence, if one wishes to compare different coastlines from the view-
point of their “extent,” length is an inadequate concept.

This chapter seeks an improved substitute, and in doing so finds
it impossible to avoid introducing various forms of the fractal con-
cepts of dimension, measure, and curve.

MULTIPLICITY OF ALTERNATIVE METHODS OF MEASUREMENT

METHOD A: Set dividers to a prescribed opening &, to be called
the yardstick length, and walk these dividers along the coastline, each
new step starting where the previous step leaves off. The I'IUII‘IIZ?CF oi:
steps multiplied by ¢ is an approximate length L(g). As the dividers

1. From “Characterizing Irregularity” by Freeman Dyson, Science, May 12,

1978, vol. 200, no. 4342, pp. 677-678. Copyright © 1978 by the American Association
for the Advancement of Science.
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opening becomes smaller and smaller, and as we repeat the opera-
tion, we have been taught to expect L(e) to settle rapidly to a well-
defined value called the true length. But in fact what we expect does
not happen, In the typical case, the observed L(g) tends to increase
without limit.

The reason for this behavior is obvious: When a bay or pen-
insula noticed on a map scaled to 1/100,000 is reexamined on a map
at 1/10,000, subbays and subpeninsulas become visible. On a 1/1,000
scale map, sub-subbays and sub-subpeninsulas appear, and so forth.
Each adds to the measured length.

Our procedure acknowledges that a coastline is too irregular
to be measured directly by reading it off in a catalog of lengths of
simple geometric curves. Therefore, METHOD A replaces the coastline
by a sequence of broken lines made of straight intervals, which are
curves we know how to handle.

METHOD B: Such “smoothing out” can also be accomplished in
other ways. Imagine a man walking along the coastline, taking the
shortest path that stays no farther from the water than the prescribed
distance €. Then he resumes his walk after reducing his yardstick,
then again, after another reduction; and so on, until ¢ reaches, say
50 em. Man is too big and clumsy to follow any finer detail. One may
further argue that this unreachable fine detail (a) is of no direct
interest to Man and (b) varies with the seasons and the tdes so much
that it is altogether meaningless. We take up argument (a) later on
in this chapter. In the meantime, we can neutralize argument (b) by
restricting our attention to a rocky coastline observed when the tide
is low and the waves are negligible. In principle, Man could follow
such a curve down to finer details by harnessing a mouse, then an
ant, and so forth. Again, as our walker stays increasingly closer to
the coastline, the distance to be covered continues to increase with
no limit.

METHOD c: An asymmetry between land and water is implied
in METHOD B. To avoid it, Cantor suggests, in effect, that one should
view the coastline with an out-of-focus camera that transforms every
point into a circular blotch of radius €. In other words, Cantor con-
siders all the points of both land and water for which the distance to
the coastline is no more than ¢. These points form a kind of sausage

or tape of width 2¢. ... Measure the area of the tape and divide it -

by 2e. If the coastline were straight, the tape would be a rectangle,
and the above quotient would be the actual length. With actual coast-
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lines, we have an estimated length L(g). As € decreases, this estimate
increases without limit. .

METHOD D: Imagine a map drawn in the manner of pom.ulllst
painters using circular blotches of radius . Instead of using circles
centered on the coastline, as in METHOD c, let us require that the
blotches that cover the entire coastline be as few in number as pos-
sible. As a result, they may well lie mostly inland near L.he capes anF1
mostly in the sea near the bays. Such a map’s area, divided by 2g, is
an estimate of the length. This estimate also “misbehaves.”

ARBITRARINESS OF THE RESULTS OF MEASUREMENT

'To summarize the preceding section, the main finding is a.lways
the same. As & is made smaller and smaller, every approximate
length tends to increase steadily without bound. ‘

In order to ascertain the meaning of this result, let us perform
analogous measurements on a standard curve from Euclid. For an
interval of straight line, the approximate measurements are essen-
tially identical and define the length. For a circle, the approximate
measurements increase but converge rapidly to a limit. The curves
for which a length is thus defined are called rectifiable.

An even more interesting contrast is provided by the results of
measurement on a coastline that Man has tamed, say the coast at
Chelsea as it is today. Since very large features are unaffected by
Man, a very large yardstick again yields results that increase as &
decreases.

However, there is an intermediate zone of &’s in which L(e)
varies little. This zone may go from 20 meters down to 20 centi-
meters (but do not take these values too strictly). But L(g) increases
again after € becomes less than 20 centimeters and measurements
become affected by the irregularity of the stones. Thus, if we trace
the curves representing L(g) as a function of ¢, there is little doubt
that the length exhibits, in the zone of ¢’s between ¢ = 20 meters
and £ = 20 centimeters, a flat portion that was not observable before
the coast was tamed.

Measurements made in this zone are obviously of great practical
use. Since boundaries between different scientific disciplines are
largely a matter of conventional division of labor between scientists,
one might restrict geography to phenomena ab(.)vr:' Man’s rcach, for
example, on scales above 20 meters. This restriction would yield a
well-defined value of geographical length. The Coast Guard may well
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choose to use the same & for untamed coasts, and encyclopedias and
almanacs could adopt the corresponding L (g).

However, the adoption of the same ¢ by all the agencies of a
government is hard to imagine, and its adoption by all countries is
all but inconceivable. For example (Richardson 1961), the lengths of
the common frontiers between Spain and Portugal, or Belgium and
Netherlands, as reported in these neighbors’ encyclopedias, differ by
20%. The discrepancy must in part result from different choices of
€. An empirical finding to be discussed soon shows that it suffices
that the & differ by a factor of 2, and one should not be surprised
that a small country (Portugal) measures its borders more accurately
than its big neighbor.

The second and more significant reason against deciding on an
arbitrary ¢ is philosophical and scientific. Nature does exist apart
from Man, and anyone who gives too much weight to any specific ¢
and L(e) lets the study of Nature be dominated by Man, either
through his typical yardstick size or his highly variable technical
reach. If coastlines are ever to become an object of scientific inquiry,
the uncertainty concerning their lengths cannot be legislated away.
In one manner ‘or another, the concept of geographic length is not
as inoffensive as it seems. It is not entirely “objective.” The observer
inevitably intervenes in its definition.

O S

THE RICHARDSON EFFECT

The variation of the approximate length L(g) obtained by
METHOD A has been studied empirically in Richardson 1961, a ref-
erence that chance (or fate) put in my way. I paid attention because
1 knew of Lewis Fry Richardson as a great scientist whose originality
mixed with eccentricity. . . . We are indebted to him for some of the
most profound and most durable ideas regarding the nature of tur-
bulence, notably the notion that turbulence involves a self-similar cas-
cade. He also concerned himself with other difficult problems, such
as the nature of armed conflict between states. His experiments were
of classic simplicity, but he never hesitated to use refined concepts
when he deemed them necessary.

- . . [Richardson concluded] that there are two constants, which
we shall call A and D, such that — to approximate a coastline by a
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broken line — one needs roughly Fe~? intervals of length €, adding
up to the length

L(g) ~ Fe'™P,

The value of the exponent D seems to depend upon the coastline
that is chosen, and different pieces of the same coastline, if consid-
ered separately, may produce different values of D. To Richardson,
the D in question was a simple exponent of no particular significance.
However, its value seems to be independent of the method chosen

to estimate the length of a coastline. Thus D seems to warrant atten-
tion.

A COASTLINE’S FRACTAL DIMENSION

Having unearthed Richardson’s work, I proposed that, despite
the fact that the exponent D is not an integer, it can and should be
interpreted as a dimension, namely, as a fractal dimension. Indeed,
I recognized that all the above listed methods of measuring L(g)
correspond to nonstandard generalized definitions of dimension
already used in pure mathematics. The definition of length based on
the coastline being covered by the smallest number of blotches of
radius € is used in Pontrjagin & Schnirelman 1932 to define the cov-
ering dimension. The definition of length based on the coastline
being covered by a tape of width 2 implements an idea of Cantor
and Minkowski, and the corresponding dimension is due to Bouli-
gand. Yet these two examples only hint at the many dimensions (most
of them known only to a few specialists) that star in diverse special-
ized chapters of mathematics. . . .

Why did mathematicians introduce this plethora of distinct def-
initions? Because in some cases they yield distinct values. Luckily,
however, such cases are never encountered in this Essay, and the list
of possible alternative dimensions can be reduced to two that I have
not yet mentioned. The older and best investigated one dates back
to Hausdorff and serves to define fractal dimension; we come to it
momentarily. The simpler one is similarity dimension: it is less gen-
eral, but in many cases is more than adequate. . . .

Clearly, I do not propose to present a mathematical proof that
Richardson’s D is a dimension. No such proof is conceivable in any
natural science. The goal is merely to convince the reader that the
notion of length poses a conceptual problem, and that D provides a
manageable and convenient answer. Now that fractal dimension is
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injected into the study of coastlines, even if specific reasons come to
be challenged, I think we shall never return to the stage when D = 1
was accepted thoughtlessly and naively. He who continues to think
that D = 1 has to argue his case. . ..

HAUSDORFF FRACTAL DIMENSION

If we accept that various natural coasts are really of infinite
length and that the length based on an anthropocentric value of €
gives only a partial idea of reality, how can different coastlines be
compared to each other? Since infinity equals four times infinity,
every coastline is four times longer than each of its quarters, but this
is not a useful conclusion. We need a better way to express the sound
idea that the entire curve must have a “measure” that is four times
greater than each of its fourths.

A most ingenious method of reaching this goal has been pro-
vided by Felix Hausdorff. It is intuitively motivated by the fact that
the linear measure of a polygon is calculated by adding its sides’
lengths without transforming them in any way. One may say (the
reason for doing so will soon become apparent) that these lengths
are raised to the power D = 1, the Euclidean dimension of a straight
line. The surface measure of a closed polygon's interior is similarly
calculated by paving it with squares, and adding the squares’ sides
raised to the power D = 2, the Euclidean dimension of a plane.
When, on the other hand, the “wrong” power is used, the result gives
no specific information: the area of every closed polygon is zero, and
the length of its interior is infinite.

Let us proceed likewise for a polygonal approximation of a
coastline made up of small intervals of length e. If their lengths are
raised to the power D, we obtain a quantity we may call tentatively
an “approximate measure in the dimension D.” Since according to
Richardson the number of sides is N = Fe~”, said approximate mea-
sure takes the value Fe’e™" = F.

Thus, the approximate measure in the dimension D is independent of
e. With actual data, we simply find that this approximate measure
varies little with &.

In addition, the fact that the length of a square is infinite has a
simple counterpart and generalization: a coastline’s approximaie
measure evaluated in any dimension d smaller than D tends to © as
¢ — 0. Similarly, the area and the volume of a straight line are zero.
And when d takes any value larger than D, the corresponding ap-
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proximate measure of a coastline tends to O as e — 0. The approx-
imate measure behaves reasonably if and only if d = D.

A CURVE’'S FRACTAL DIMENSION MAY EXCEED |;
FRACTAL CURVES

' By design, the Hausdorff dimension preserves the ordinary
dimension's role as exponent in defining a measure.

. But from another viewpoint, D is very odd indeed: it is a frac-
tion! In particular, it exceeds 1, which is the intuitive dimension of
curves and which may be shown rigorously to be their topological
dimension D;.

I propose that curves for which the fractal dimension exceeds
the topological dimension 1 be called fractal curves. And the present
chapter can be summarized by asserting that, within the scales of

interest to the geographer, coastlines can be modeled by fracial
curves. Coastlines are fractal patterns.
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